

| Session 3: Surviving 2009<br>Economic Outlook & Advice | Session 4: Light Metals Finishing         | Session 5: Decorative Plating   |
|--------------------------------------------------------|-------------------------------------------|---------------------------------|
| Chair: Michael Siegmund                                | Chair: James Lindsay                      | Chair: Mike Barnstead           |
|                                                        |                                           | A New Plating-on-Plastic        |
|                                                        |                                           | Process for Chrome Plating Non- |
|                                                        | Direct Plating of Electroless Nickel onto | ABS Substrates, Robert          |
|                                                        | Magnesium, Rich Bellemare, OMG            | Hamilton, MacDermid Inc.,       |

|                                                                                                                                                                                                                   | Electronic Chemicals<br>Technical Paper                                                                                                                                                                                                      | Charles Buechler & Stuart<br>Brown, General Motors                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Keynote</b> : Dr. Ken Mayland, ClearView<br>Economics,LLC, <u>What will be the</u><br><u>Signs of the Coming Recovery</u>                                                                                      | Selective Plating on Titanium Alloys,<br>Darrin Radatz, Ani Zhecheva & Sid<br>Clousera, SIFCO Applied Surface<br>Concepts<br>Technical Paper                                                                                                 | Technical Paper<br>Metallizing of Plastics with<br>Virtually Hexavalent Chromium<br>Free Etch Solutions, Dr.<br>Andreas Fath, Hans Grohe AG &<br>Dr. John McCaskie, Surface<br>Science Consultants<br>Technical Paper                 |
|                                                                                                                                                                                                                   | Zincate Free Plating of Beryllium,<br>Magnesium, Aluminum and Their<br>Alloys, Dr. John W. Bibber, Sanchem,<br>Inc.<br>Technical Paper                                                                                                       | Electroless Plating on Plastic<br>Induced by Selective Laser<br>Activation, Y. Zhang & J.S.<br>Nielsen, Technical University of<br>Denmark & P.T. Tang, IPU                                                                           |
|                                                                                                                                                                                                                   | Sputter Seeded Activation for<br>Electroless Nickel Plating on Composite<br>Alloys, Dr. Leonard Nanis, LN3<br>Electrochemical Engineering<br>Technical Paper                                                                                 | Investigations into the<br>Performance of Multi-layer<br>Nickel Coatings in both CASS<br>and Exhaust Gas Corrosion<br>Testing, Mike Barnstead,<br>MacDermid & Will Schumacher,<br>General Motors                                      |
| Panel Discussion: How will you<br>survive 2009 to the Recovery<br>Moderator: Michael Siegmund<br>Panelists: Dan Brockman,Tech<br>Metals, John Lindstedt, Artistic Plating,<br>Jim Jones, Dixie Industrial Plating | Comparison of Micro Arc Oxidation<br>and Friction Stir Processed Coatings<br>on Aluminum Alloy, Sudhir Baral,<br>Anand Patil, Raghu Raj Rangaraju,<br>Prasad Kalala, Raja K.S. & Misra M.,<br>Unviversity of Nevado, Reno<br>Technical Paper | Maximizing Decorative<br>Electroplating Productivity by<br>Optimizing the Rack Design for<br>a Family of Ten Different Door<br>Handles, Bart van Den Bossche,<br>Alan Rose, Jim Sweney & Jerry<br>Phillips, Elsyca<br>Technical Paper |
|                                                                                                                                                                                                                   | New Energy Saving<br>Electropolish/Anodize Process Produces<br>"Type 23" Heavy Thickness and<br>Salvage Hard Anodize for<br>Discrepant/Worn Part Repair, Fred C.<br>Schaedel, Alpha Process Systems<br>Technical Paper                       | <u>Alloys of Color</u> , Ralph Dixon,<br>Basically Nickel<br><u>Technical Paper</u>                                                                                                                                                   |

| Session 6: Surviving 2009 -                                                                                                                                                                                                 | Session 7: Trivalent Passivates: Are                                                                                                                                                         | Session 8: Functional Plating                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chair: Jeff Hannapel                                                                                                                                                                                                        | Chair: Eric Olander                                                                                                                                                                          | Chair: Jennings Taylor                                                                                                                                                                                                                                   |
| Regulatory Trends in Surface<br>Finishing, Christian Richter, The<br>Policy Group<br>Fundamentals of Global EHS<br>Regulations and How They Impact<br>the Surface Finishing Industry,<br>Darrin L. Lacheta, Tosoh SMD, Inc. | Behavior of Trivalent Passivates in<br>Accelerated Corrosion Tests, Tom<br>Rochester, Plating Systems and<br>Technologies, Inc<br><u>Technical Paper</u>                                     | Ternary Alloy Process in<br>Electroless Deposition Deposits,<br>Duncan Beckett, MacDermid,<br>plc<br>Technical Paper<br>Advancement in PTFE<br>Dispersions for Electroless<br>Nickel Co-Deposition, Nicole<br>Micyus, MacDermid, Inc.<br>Technical Paper |
| REACH: Emerging Compliance<br>Challenges, Martha Marrapese,<br>Keller & Hackman                                                                                                                                             | Why do trivalent chromates work in one<br>shop and not in another shop? Do<br>trivalent chromates turn to hexavalent<br>while they are in the field?<br>Panel Discussion: Behavior Trivalent | Comparison of Electroless<br>Nickel & Functional Chromium,<br>George E. Shahin, CEF, Atotech<br>USA<br>Technical Paper                                                                                                                                   |
| Outlook on OSHA Priorities for<br>2009, U.S. Department of Labor<br>Representative                                                                                                                                          | Passivates in Accelerated Corrosion<br>Tests<br>Moderator: Eric Olander<br>Panelists: George Brutchen, Delphi<br>(retired), Frank Altmayer, Scientific                                       | A Stable Nanocrystalline Alloy<br>Functional Coating, Allen R.<br>Jones, Joe Hamann,<br>Christopher A. Schuh & Alan C.<br>Lund, Xtalic Corporation                                                                                                       |
| Managing Compliance in Tough<br>Economic Times, Joelie Zak,<br>Scientific Control Laboratories, Inc.                                                                                                                        | Control Labs Inc, Skip Griffin, MacDermid,<br>James Jones, Dixie Industrial Plating,<br>Doris Hill, GM & USCAR,Bing Xu, Ford &<br>USCAR (invited)<br>Presentations:                          | <u>Technical Paper</u><br><u>Hard Chromium Plating Process</u><br><u>Using Ionic Liquids</u> , Patrick<br>Benaban, Ecole Nationale<br>Superieure des Mines                                                                                               |
|                                                                                                                                                                                                                             | <u>Trivalent Chromium Issues</u><br><u>Hexavalent Chrome in Trivalent</u><br><u>Passivates?</u>                                                                                              | <u>Technical Paper</u>                                                                                                                                                                                                                                   |

| <u>Sur-Fin 2009Trivalent Chrome Panel</u><br><u>Discussion</u><br>Sutomotive Finishing: Recent<br>Developments                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                    | Recent Developments in the<br>Field of Aluminum Deposition<br>Using Ionic Liquids, Megan<br>Turner, BASF Corporation<br>Technical Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Session 10: Surface Finishing<br>Research                                                                                                                                                          | Session 11: Precious and<br>Specialty Metal Plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chair: Melissa Klingenberg                                                                                                                                                                         | Chair: William Sepp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Shockwave Induced Spraying: A New<br>Cost-Effective Solid-State Spraying<br>Process, Dr. Julio Villafuerte,<br>Centerline Windsor Ltd.                                                             | Platinum Plating for Turbine<br>Blades: Technology Development<br>and Process Improvement,<br>Stewart J. Hemsley & Dr. Zhou<br>Wenxiu, Metalor Technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                    | Technical Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Comparison of Biological Toxicity of<br>Several Plating Products by<br>Mammalian Cells, Dr. Akiko Ogawa,<br>Dr. Naoaki Okuda & Dr. Hideyuki<br>Kanematsu, Suzuka National College<br>of Technology | Silver Plating from Cyanide Free<br>Solutions, Steven Burling,<br>Stewart Hemsley & Priscilla<br>Hong, Metalor Technologies<br>Technical Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Change of Residual Stress with Alloy<br>Film Formation by HSSL Process, Dr.<br>Hideyuki Kanematsu, Kaori<br>Shirakihara & Dr. Daisuke Kuroda,<br>Suzuka National College of<br>Technology          | Analysis of Gold Consumption for<br>the SBE Plater, Vibratory Plating<br>and Barrel Plating, <i>Dr. George</i><br><i>Hradil, Technic Inc.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bright Tin Plating Baths, Dr. Sergey<br>Kruglikov, E. Averin, Kiryll Smirnov,<br>Valery I. Kharlamov,<br>S.S.Kruglikov Consultants<br>Technical Paper                                              | A New Low Ammonia, High<br>Speed Palladium-Nickel<br>Electroplating Process for<br>Connector Applications, Mike<br>Toben and Wan Zhang, Rohm<br>and Haas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                    | Aur-Fin 2009Trivalent Chrome Panel<br>Viscussion  Utomotive Finishing: Recent<br>Nevelopments  Session 10: Surface Finishing<br>Research  Chair: Melissa Klingenberg  Shockwave Induced Spraying: A New<br>Cost-Effective Solid-State Spraying<br>Process, Dr. Julio Villafuerte,<br>Centerline Windsor Ltd.  Comparison of Biological Toxicity of<br>Several Plating Products by<br>Mammalian Cells, Dr. Akiko Ogawa,<br>Dr. Naoaki Okuda & Dr. Hideyuki<br>Kanematsu, Suzuka National College<br>of Technology  Technical Paper Change of Residual Stress with Alloy<br>Film Formation by HSSL Process, Dr.<br>Hideyuki Kanematsu, Kaori<br>Shirakihara & Dr. Daisuke Kuroda,<br>Suzuka National College of<br>Technical Paper Bright Tin Plating Baths, Dr. Sergey<br>Kruglikov, E. Averin, Kiryll Smirnov,<br>Valery I. Kharlamov,<br>S.S.Kruglikov Consultants |

|                                                                                                                                                                                                                                                                |                                                                                                                                                                              | Technical Article                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Being a "GREEN" Finisher Can Mean<br>Savings of Tens of Thousands of<br>Dollars: How the Latest Technologies<br>in Automated Covered Tanks are No<br>Longer Just Saving You Energy, <i>Brod</i><br><i>Hankinson, KCH Engineered Systems</i><br>Technical Paper | Development of Galvanostatic Pulsed<br>Regimes to Deposit Uniform Arrays of<br>Indium Nano-bumps for Flip Chip<br>Bonding, W. Graham Yelton, Sandia<br>National Laboratories | Sn-Ag Alloy Plating Films<br>Mitigating Biofilm Formation, Dr.<br>Hideyuki Kanematsu, Suzuka<br>National College of Technology,<br>Dr. Sheelagh Campbell & Dr.<br>Iwona Beech, University of<br>Portsmouth<br><u>Technical Paper</u> |
| Environmentally Friendly Plating<br>System, Toshiaki Murai, Dipsol of<br>America Inc.                                                                                                                                                                          | Effect of Organic Additives for e-CMP<br>of Copper, P. Cojocaru, F. Muscolino,<br>L. Magagnin & P.L. Cavallotti,<br>Politecnico de Milano Chemistry &                        | Indium Alloy as Cadmium Brush<br>Plating Replacement, Paul<br>Brezovec, Concurrent                                                                                                                                                   |
| Technical Paper                                                                                                                                                                                                                                                | A.C. West, Columbia University<br>Technical Paper                                                                                                                            | Technologies Corp.                                                                                                                                                                                                                   |

| Session 12: Unresolved Issues:<br>The Future of Surface Finishing<br>for Defense Applications | Session 13: Organic Finishing                                                                                                                   | Session 14: Zinc and Zinc<br>Alloy Surface Finishing                                                    |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Chair: Keith Legg                                                                             | Chair: Steve Burling                                                                                                                            | Chair: Rick Delawder                                                                                    |
| TheEmerging Future of Surface                                                                 | Surface Finishing of Concrete<br>Structures by a Silane Series Solvent,<br>Dr. Hideyuki Kanematsu, Suzuka<br>Natinal College of Technology, Dr. | <u>Dedicated Processes for</u><br><u>Electroplating on Fasteners</u> ,<br>Jean-Jacques Duprat, Coventya |

 $http://www.nasf.org/...cfm?Section=Technical\_Conference\_Schedule&Template=/MembersOnly.cfm&NavMenuID=781&ContentID=6551&DirectListComboInd=D[2009/08/19\ 21:20:11]$ 

| Technology, Dr. Keith Legg, Rowan<br>Technology                                                                                                                                                                                                     | Kazumi Murakami, Mie Prefecture<br>Industrial Research Institute & Dr.<br>Kazuhiro Nakata, Osaka University<br>Technical Paper                                                                      | Group<br>Technical Paper                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Chromate Replacements in Naval</u><br><u>Aircraft</u> , Bill Nickerson, US Navy                                                                                                                                                                  | Environmentally Friendly Anticorrosive<br>Primer for Coil Coating Applications<br>Based on Oxy-Amino-Phosphate of<br>Magnesia, Arieh Calahorra & Saher<br>Khatib, Pigmentan Ltd.<br>Technical Paper | Acid Zinc Nickel: A New Chapter<br>in Zinc Nickel Plating, Irene<br>Kubitza, Atotech Deutschland<br>GmbH                                                                                                                             |
| Corrosion Prevention and Surface<br>Technology Challenges for the Navy<br>and Other DoD Coating Problems,<br>Don Heileman, National Surface<br>Technology Center                                                                                    | Corrosion Resistance Mechanism of<br>Chromium Free Zinc-Rich Paint Film<br>on Scratched Areas, Yasuhau<br>Takayama, Yuken Industry Co., Ltd.<br>Technical Paper                                     | A Reality for Nano-Technology -<br>High Performance Metal Surface<br>Finishing by Nano-Ceramic<br>Coating, Dr. Jay C-J Chu & Dr.<br>Peter-Klaus Kos, Nanomate<br>Technology                                                          |
| OEM Drivers and Replacement<br>Options for Aircraft, Steve Gaydos,<br>Boeing                                                                                                                                                                        | How to Increase First Time Quality by<br>Reducing Paint Defects, Kevin<br>Lockwood, Paint Performance<br>Consulting<br>Technical Paper                                                              | Blackening Processes for Zinc<br>Coatings, <i>Tom Rochester, Plating</i><br>Systems and Technologies, Inc.<br>Technical Paper                                                                                                        |
| Hard Chromium Replacement in Air<br>Force Maintenance, Repair and<br>Overhaul, <i>Melissa Klingenberg,</i><br><i>Concurrent Technologies</i>                                                                                                        | Laser Depainting at Air Logistics<br>Centers: An Update, <i>Thomas Naguy,</i><br>Air Force Research Laboratory                                                                                      | Effect of Surface Processing<br>Variables on Hydrogen<br>Embrittlement of Steel Fasters<br>Part 2: Electroplating and non<br>Electrolytic Processes, S.<br>Brahimi, IBECA Technologies<br>Corporation & S. Yue, McGill<br>University |
| Effect of Surface Processing Variables<br>on Hydrogen Embrittlement of Steel<br>Fasteners Part 2: Electroplating and<br>Non-electrolytic Processes, <i>S.</i><br><i>Brahimi, IBECA Technologies Corp. &amp;</i><br><i>S, Yue, McGill University</i> | UV-Curable Coatings for DoD<br>Applications: An Update, <i>Georgette</i><br><i>Nelson, Concurrent Technologies</i>                                                                                  | Nano Particle Based Trivalent<br>Passivates, Skip Griffin,<br>MacDermid, Inc.<br>Technical Paper                                                                                                                                     |

#### © 2009 NATIONAL ASSOCIATION FOR SURFACE FINISHING • WWW.NASF.ORG PHONE: (202) 457-8404 • FAX: (202) 530-0659 1155 15th Street, NW • Suite 500 • Washington, DC 20005

SURFACE FINISHING · AUTOMOTIVE DESIGN · CONSUMER PRODUCTS · INDUSTRIAL PRODUCTS MANUFACTURING · DECORATIVE PLATING · ASSOCIATION · EDUCATION CONTINUING EDUCATION · RESEARCH · SCHOLARSHIP

#### Surface Finishing of Concrete Structures by a Silane Series Solvent

Hideyuki Kanematsu<sup>\*1</sup>, Kazumi Murakami<sup>\*2</sup>, Kazuhiro Nakata<sup>\*3</sup> \*1: Suzuka National College of Technology \*2: Mie Prefecture Industrial Research Institute \*3: Osaka University

In many parts of the sewage line, concrete structures have been used. In those environments, hydrogen sulfide gases are very easy to be evolved. The gases are often changed to sulfuric acid, being aided by biofilims' action on the concrete. The sulfuric acid penetrates into the concrete structures and deteriorates them gradually due to the decrease of pH. Conventionally, the epoxy resin was used to protect the penetration of sulfuric acid. However, the thickness of the epoxy coating requires several millimeters. Therefore, we developed a silane compounds which could protect the penetration with the thickness of 300 micrometers. The performance and problems were testified and discussed in this study.

For more information contact: Professor Hideyuki Kanematsu, Ph.D, FIMF Dept. MS & E Suzuka National College of Technology Shiroko-cho, Suzuka, Mie 510-0294 Japan Email: kanemats@mse.suzuka-ct.ac.jp Web: http://www1.mint.or.jp/~reihidek/

#### 1. INTRODUCTION

In Japan, sewage lines have been developed very rapidly and maintained since 1970s. Nowadays, the number of miles is about 221,000 (355,000 km). When one pays attention to the concrete rebar pipes, it reaches about 40,000 miles (64,000 km)<sup>(1)</sup>. The corrosion and the following deterioration phenomena for sewage line concretes were already observed at sewerage pipes in Los angeles, USA, 1900. And also in Japan, laboratory and fields tests about the technical problem have been carried out so far. In 1987, "Guideline & Manuals for Protective Concrete Coating of Sewage Line" about the problem was established by Japan Sewage Works Agency<sup>(2)-(4)</sup>. Nowadays, most of Japanese engineers in this field very often refer to this guideline.

The corrosion and deterioration of concrete in sewage lines are originally induced by sulfate reducers and sulfur oxidizing bacteria reacting with hydrosulfate flowing into waste water. The reaction changes hydrosulfate into sulfuric acid via hydrogen sulfide and the sulfuric acid decreases the pH of concrete which leads to the structure collapse finally, since the concrete loses alkalescency. Therefore, the guideline also mentioned above describes the coating-type resin lining technique in detail as one of effective corrosion protection methods, since the coating could protect the penetration of sulfuric acid. However, the technique requires the multiple repetition of coating which increases the thickness as a result and leads to high cost, particularly when the concrete structure would be used in high concentration of hydrogen sulfide.

In this paper, we investigated a silane compound for the application to sewage concrete structures, since it might shorten the term of works by saving the repetition number and cut the cost by decreasing the thickness of coating.

#### 2. CORROSION OF CONCRETE IN SEWAGE LINES AND ITS COUNTERMEASURE

Generally speaking, the corrosion of concrete in sewage line occurs through

the following steps:

#1: The sulfate ion which comes from cleaning substances for domestic use, aluminum sulfate in filtration plants etc. mixes into sewage water.

#2: The biological reactions between sulfate ion and anaerobic sulfate reducing bacteria occur and hydrogen sulfide  $(H_2S)$  forms.

#3: Hydrogen sulfide gas diffuses into air through turbulence of sewage water or polluted mad.

#4: Hydrogen sulfide gas is absorbed into water condensed on side walls or ceilings made of concrete in sewage system.

#5: In the condensed water, sulfuric acid forms through the reaction between hydrogen sulfide and aerobic sulfur oxidizing bacteria.

#6: The formed sulfuric acid reacts with calcium hydroxide (Ca(OH)<sub>2</sub>), ettringite

 $(3CaO \cdot Al_2O_3 \cdot 3CaSO_4 \cdot 32H_2O)$  etc. from concrete to form gypsum  $(CaSO_4 \cdot Al_2O_3 \cdot 3CaSO_4 \cdot 32H_2O)$ 

2H<sub>2</sub>O), which deteriorate concrete structures finally.

The following countermeasures against the corrosion phenomena mentioned above are now investigated.

#1: Mitigation of occurrence: Inhibition of sulfate ion into sewage water, restraint of anaerobic environment etc.

#2: Inhibition of corrosion: inhibition of hydrogen sulfide diffusion, dilution of hydrogen sulfide in gas phase etc.

#3: Corrosion protection: Application of anti-sulfuric acid materials, the increase of anti-sulfuric acid property of concrete, coating of concrete surfaces.

As maintenance and anti-corrosion technique for new concrete, coating-type techniques have been often used. The guideline for anti-corrosion by Japan Sewage Works Agency<sup>(3)</sup> defines four ranks as A, B, C, D<sub>1</sub> according to the performances. And D<sub>1</sub> is used for the severest environment among them. The properties required for D<sub>1</sub> are shown in the following table (Table 1).

| Inspection Item | Test Method        | Specification for D <sub>1</sub> |
|-----------------|--------------------|----------------------------------|
| Appearance      | JIS K5600-1-1:1999 | No wrinkles, irregularity,       |

Table 1 Specification for D1 category

|                      |               | peeling, cracking of       |
|----------------------|---------------|----------------------------|
|                      |               | coating                    |
|                      |               | >1.5MPa at standard state  |
| Adhesiveness         | JIS A6909     | >1.2MPa at water           |
|                      |               | absorption state           |
|                      |               | No bunch, cracking,        |
|                      |               | softening, dissolution of  |
| Acid tolerance       | JIS K5600-6-1 | coating after 60 days      |
|                      |               | immersion in 10%           |
|                      |               | sulfuric acid solution     |
|                      |               | <5% penetration depth of   |
|                      |               | the designed thickness     |
| Penetration depth of |               | And                        |
| sulfuric acid        | EPMA          | <100 µm,                   |
|                      |               | After 120 days             |
|                      |               | immersion in 10%           |
|                      |               | sulfuric acid solution     |
|                      |               | No bunch, cracking,        |
|                      |               | softening, dissolution of  |
| Alkali resistance    | JIS K5600-6-1 | coating after 60 days      |
|                      |               | immersion in calcium       |
|                      |               | hydroxide saturation       |
|                      |               | solution                   |
| Permeability         | JIS A1404     | <0.15g of transmissibility |
|                      |               | coefficient                |

It should be noted that the penetration rate of sulfate ion into the coating layer is regulated. In fact, the guideline describes that the appropriate technique compatible with the specification should be multiple repeated coating processes <sup>(3)</sup> which the thick coating layer would form as a result. In this experiment, we applied a silane compound to concretes for sewage lines and tried to reduce the

thickness of coating down to 300 micro meters and also to decrease the repetition numbers of coating down to two times, so that the thinner silane compound coating would satisfy the specification for  $D_1$  category shown in Table 1.

#### **3. EXPERIMENTAL**

#### 3.1 Inorganic sealer

Conventionally, epoxy and polyurethane resins have been mainly diluted by a thinner and the resin component of them has been used for the purpose of sealing<sup>(5)</sup>. However, they could not seal the micro pores of thermal spray coating perfectly, since the solid contents were low. And as a result, they failed to increase the coating performances. Therefore, we used a quite different sealer based on silane compounds in the series of investigation to overcome the defects of conventional sealers. One of the authors has already investigated the sealer in the past<sup>(6)</sup> to increase the corrosion resistance of thermal spray coating and it was already patented by D & D Corporation<sup>(7)</sup>. Now in Japan, it is often used for highway bridges, runaway lights and bridge of airports etc. and earns a good reputation. At the same time, it is still investigated on laboratory scales for some other applications<sup>(8)</sup>. The so called inorganic sealer is based on a silane compound and a curing catalyst is added to it. It absorbs moisture components in air to form a polymer through hydrolysis - condensation reactions<sup>(7)</sup>. In the series of experiments, we have applied this kind of silane compound sealer to the protection of deteriorated concrete in sewage lines.

In this investigation, four kinds of silane compounds were tested by changing the molecular weights of oligomers which was composed of methyl silane and phenyl silane to fix the composition of silane compound sealer. The samples were describes in Table 2.

| specimen number | average molecular weight |
|-----------------|--------------------------|
| 1               | 360                      |
| 2               | 760                      |

Table 2 Molecular weight of silane compounds used in this experiment

| 3 | 1,500 |
|---|-------|
| 4 | 1,700 |

As curing catalyst, two kinds of titanium complex (type A and B), a kind of aluminum complex, and zirconium complex were tested to evaluate the curing rate and protection capability against sulfuric acid penetration. In order to choose an appropriate filler, titanium oxide, talc, aluminum borate whisker, glass flake, burned kaolin, attapulgite and burned scallop shell were tested. According these evaluations, the composition of silane compound sealer was fixed to apply to the coating of concrete.

#### 3.2 Evaluation tests

Evaluation tests for the silane compound were classified into four categories in this study. The first one was carried out to fix the molecular weight of silane compound applicable to the concrete. Various compounds were coated  $(200g/m^2)$  to mortar plates (70mm x 70mm, the thickness: 20mm), hardened and kept at room temperature in 7 days. Then they were immersed into 10% sulfuric acid and the surface conditions were observed by naked eyes. And the protection capability against the penetration of sulfuric acid was also evaluated by the penetration rate of sulfate ion.

The second test was carried out to fix a curing catalyst appropriate for the coating. The four kinds of chemicals mentioned in 3.1 were added to a certain kind of silane oligomer. Then the curing rates and protection capability against sulfuric acid penetration were measured.

The third test was carried out to fix some kinds of fillers appropriate for the coating. The seven kinds of materials as filler candidate were already mentioned in the previous section. They were added to a certain silane compound and the protection capability was investigated in the same way with the first test.

From all of these three kinds of tests mentioned above, a certain composition of silane compound for concrete coating was fixed. Then it was applied to concrete coating and the characteristics were investigated how it could be complied with the specification of D1. (The fourth evaluation tests)

#### 4. RESULTS AND DISCUSSION

#### 4.1 Composition determination of silane compound

The silane compounds having various molecular weights shown in Table 2 were coated on mortar plates and the surface appearances were observed by naked eyes. For all specimens from No.1 to 4, titanium complex was used as curing catalyst. All specimens were damaged and peeled off due to the penetration of sulfate ion to some extent. However, the extent differs from specimen to specimen. For specimen No.1, 100% of the coating peeled off due to the penetration of sulfate ion. As for the specimen No.2, 90% of the coating peeled off. For both No.3 and 4, 5 % of the coating peeled off.



(1) specimen No.2(2) specimen No.3Fig.1 Surface apperances for specimen No.2 and 3.

Fig. 1 shows the observation results by naked eyes for specimen No.2 and 3. As explained in the previous report by Japan Sewage Works Agency<sup>(2)</sup>, penetrated sulfate ion reached the concrete surface through the coating layer and as a result, the concrete was deteriorated and heaved up. It suggests that the protection capability against sulfuric acid depended on the penetrate rate of sulfuric acid.

Fig 2 shows the correlation between the molecular weight of silane compound and the ratio of peeling area by the penetration of sulfuric acid. As shown in the figure, the protection capability increased with the molecular weight of silane compound.



Fig.2 Correlation between ratio of peeling area and molecular weight. of silane compound

On the other hand, the durability for all of these specimens was investigated by a complex cycle environmental test (the repetition of immersion in hot water at 80 degrees Celsius for two hours and drying at 80 degrees Celsius for four hours). The result indicates that the specimen No.4 showed the micro cracks in the coating layers at the very early stage of the tests. It suggests that the internal stress in the coating induced by the repetition of wetting and drying was accumulated and the coating layer was cracked when the internal stress exceeded over the tensile stress of coating layer. From all of these tests, we chose the specimen No.3 for the following tests.

#### 4.2 Determination of curing catalyst

Using silane oligomer having the molecular weight of 1,500, we evaluated the protection capability against the penetration of sulfate ion for the five kinds of curing catalysts by the same method with that in the previous section. As for aluminum based filler and zirconium based one, the curing process required several days more than 3 days and we concluded that they were inappropriate from the viewpoint of practical application. As for the two kinds of titanium complex, the complete curing times were 24 hours. However, the protection capability against the penetration of sulfuric acid for type A was better than that for type B and therefore, we chose titanium complex type A was chosen for the following test.

#### 4.3 Determination of filler



Fig.3 Change of protection capability against the penetration of sulfuric ion by the difference of fillers

Seven kinds of fillers were dispersed into the silane oligomer whose average molecular weight was 1,500, so that the weight ratio of filler to oligomer would be 0.25. And 2% titanium complex was added to the compound as curing catalyst. The specimen's protection capability against the penetration of sulfate ion was evaluated by the same method mentioned above. The results were shown in Fig.3. They suggest that the positive effects for the protection capability of concrete were remarkable for titanium oxide, talc and aluminum borate whisker fillers. However, the cost of aluminum borate whisker is relatively high and we concluded that it would be inappropriate for the practical application. Therefore, we chose titanium oxide and talk as filler in the following investigation.

As for the two kinds of filler (titanium oxide and talk), the filler ratios were changed in the following investigation to increase the protection capability against the penetration of sulfuric acid. Concretely speaking, the weight percentage of filler was increased to 40 % for both cases, and the same investigation was carried out. When only titanium oxide was added as filler, the protection capability decreased slightly. When the mix of titanium oxide and talk (the weight ratio 1:1) were used on the other hand, the protection capability showed the same very high value with those in Fig.3. Therefore, we chose the mix of two fillers for the following experiment.

4.4 Evaluation for the performance of the new concrete coating agent

From all of the investigations and discussion described from section 4.1 - 4.3, we decided the final composition of the new silane coating agent in the following table (Table 3).

| ruble 5 i mai chemieur composition of shalle compound |                |        |                 |
|-------------------------------------------------------|----------------|--------|-----------------|
| Silane oligomer                                       | Titanium oxide | Talc   | Curing catalyst |
| 60 wt%                                                | 20 wt%         | 20 wt% | 2 wt%           |

Table 3 Final Chemical composition of silane compound



The coating agent shown in table 3 was coated to the concretes. The amount of coating was  $600g/m^2$  corresponding to the thickness of 300 micro meters. And their performances for inspection items described by D<sub>1</sub> specification (Table 1)

were investigated.

As for the appearance described JIS K5600-1-1:1999, no wrinkles, irregularity, peeling nor cracking of coating were observed. The adhesiveness test according to JIS A6909 indicates that it showed 3.1MPa at the standard state and 1.9MPa at water absorption state. Both values exceeded the standard value The peeling of coating was not observed, but the concrete itself was well. broken. The acid tolerance was achieved against sulfuric acid completely. When the coated concrete was immersed in 10% sulfuric acid for 60 days, the coating did not show any damages. As for the penetration depth of sulfuric acid corresponding to the protection capability against sulfuric acid penetration directly, the penetration of sulfur element in the coating layer was not observed after 120 The result of EPMA analysis was shown in Fig.4. Fig.4-(1) days immersion. shows the element analysis for silicon and the coating layer could be confirmed in the photo. However, sulfur level was almost zero in the corresponding area in Fig.4-(2) and it indicates that the coating layer did not contain sulfur and also that the penetration of sulfuric acid did not occur within 120 days after the beginning of immersion.

The concrete specimen was immersed into calcium hydroxide solution for 60 days to investigate alkali resistance. And any change was not observed after the immersion and it indicates that the alkali resistance satisfied  $D_1$  specification. Finally, the water permeability was 0.01 g for the new coating agent and the result also satisfied  $D_1$  specification.

#### **5. CONCLUSIONS**

We carried out a series of experiments to develop the concrete coating for the protection against the penetration of sulfuric acid. The developed chemical was silane based oligomer with fillers and a curing catalyst. Being compared with the conventional coatings, the new coating chemical realized the complete protection against the penetration of sulfuric acid with thinner coating layer (300 micro meters) as well as other performances such as appearance, adhesiveness, acid tolerance etc., which could complied with the severest standard by Japan Sewage Works Agency completely. It should be further investigated and developed about many practical problems including coating techniques. However, the significance of the silane compound based coating will be focused more in the near future.

#### ACKNOWLEDGEMENT

We authors would like to make an address of many thank for D & D Corporation (7820-20 Sakura-cho, Yokkaichi-city, Mie, 512-1211, Japan) which gave us useful suggestion, materials and contribution.

#### REFERENCES

(1) Ministry of Land, Infrastructure, Transport and Tourism, Japan: http://www.mlit.go.jp/crd/city/sewerage/data/kanzaisuii.html (Japanese)

(2) Japan Sewage Works Agency: Report on anti-corrosion techniques and evaluation for them, 2001 (Japanese)

(3) Japan Sewage Works Agency: Guideline & Manuals for Protective Concrete Coating of Sewage Line, 2002 (Japanese)

(4) Uno, Y, *Deterioration of Concrete for sewage lines and Its Countermeasure*, Rust Convention & Control, Japan, 2007. **51**: p524-534. (Japanese)

(5) Japan Thermal Spraying Society, *Handbook of Thermal Spraying*, 1998, p349-356 (Japanese)

(6) Kanematsu, H, Barry, D.M, McGrath, P, Ohmori A, *Corrosion Protection of Metal Spray Coating by Using an Inorganic Sealing Agent for Its Micro-pores*, Proceeding of International Thermal Spray Conference & Exposition, Osaka, Japan, 2004, p.10-12

(7) D & D Corporation, Sealers, Japan Patent Office (JPO) No.3816354

(8) Kato, Y, Van Aken, D.C, Salt Fog Corrosion Testing of Al-Y-Co based Nano-crystalline and Amorphous Coatings Produced by Atmospheric Plasma Spray, The ASM International Surfaced Engineering Congress and Exposition Orland, 2004

### Surface Finishing of Concrete Structures by a Silane Series Solvent

Hideyuki Kanematsu<sup>\*1</sup>, Kazumi Murakami<sup>\*2</sup>, Kazuhiro Nakata<sup>\*3</sup> \*1: Suzuka National College of Technology \*2: Mie Prefecture Industrial Research Institute \*3: Osaka University

### Contents

- Background of this study
- Purpose of this study
- Experimental
- Results and Discussion
- Conclusions
- Acknowledgement

### Japanese Sewage Line



### **Deterioration of Sewage** Line Concrete



descriptions!

相

### **Conventional Countermeasures**

coating-type resin lining technique

Coating layers are generally thick.

multiple repetition of coating

High cost

### Silane Compound



The silane compound penetrates porous surfaces such as spray coated film & concrete structures very easily.

The silane compound is hardened by the reaction of moisture component in air. It coated the substrate perfectly.

### Specification for D1 category (1)

| Inspection Item | Test Method            | Specification for D <sub>1</sub>                                                                                           |
|-----------------|------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Appearance      | JIS K5600-1-<br>1:1999 | No wrinkles,<br>irregularity, peeling,<br>cracking of coating                                                              |
| Adhesiveness    | JIS A6909              | <ul> <li>&gt;1.5MPa at standard</li> <li>state</li> <li>&gt;1.2MPa at water</li> <li>absorption state</li> </ul>           |
| Acid tolerance  | JIS K5600-6-1          | No bunch, cracking,<br>softening,<br>dissolution of<br>coating after 60 days<br>immersion in 10%<br>sulfuric acid solution |

### Specification for D1 category (1)

| Inspection Item                       | Test Method   | Specification for D <sub>1</sub>                                                                                                      |
|---------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Penetration depth<br>of sulfuric acid | EPMA          | <5% penetration depth<br>of the designed<br>thickness<br>And <100 µm,<br>After 120 days<br>immersion in 10%<br>sulfuric acid solution |
| Alkali resistance                     | JIS K5600-6-1 | No bunch, cracking,<br>softening, dissolution of<br>coating after 60 days<br>immersion in calcium<br>hydroxide saturation<br>solution |
|                                       |               |                                                                                                                                       |

### Specification for D1 category (1)

| Inspection Item | Test Method | Specification for D <sub>1</sub>             |
|-----------------|-------------|----------------------------------------------|
| Permeability    | JIS A1404   | <0.15g of<br>transmissibility<br>coefficient |

### Purpose of this study



Does the very thin silane compound satisfy D1 specification?

Can the very thin silane compound block sulfuric acid?



### **Experimental - Evaluation**



# Composition determination of silane compound





Specimen Number 2

**Specimen Number 3** 

The deterioration of concrete heaved up the coating layer.



Fig.2 Correlation between ratio of peeling area and molecular weight. of silane compound



Fig.3 Change of protection capability against the penetration of sulfuric ion by the difference of fillers

## Chemical composition of silane compound decided by this investigation

| Silane      | Titanium    | Talc        | Curing     |
|-------------|-------------|-------------|------------|
| oligomer    | oxide       |             | catalyst   |
| 60 pts. wt% | 20 pts. wt% | 20 pts. wt% | 2 pts. wt% |



## EPMA results for the concrete specimen coated by the silane compound



the coating layer

### Conclusions

We carried out a series of experiments to develop the concrete coating for the protection against the penetration of sulfuric acid.

The developed chemical was silane based oligomer with fillers and curing catalyst.

### Conclusions 2

Being compared with the conventional coatings, the new coating chemical realized the complete protection against the penetration of sulfuric acid with thinner coating layer (300 micro meters) as well as other performances such as appearance, adhesiveness, acid tolerance etc., which could complied with the severest standard by Japan Sewage Works Agency completely.

### Conclusions 3

It should be further investigated and developed about many practical problems including coating techniques. However, the silane compound based coating will increase more significant in the near future.

### Acknowledgement

We authors would like to make an address of many thank for D & D Corporation (7820-20 Sakura-cho, Yokkaichi-city, Mie, 512-1211, Japan) which gave us useful suggestion, materials and contribution.